LeetCode Q 64 - Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Solution
Solution 1: DP using an additional array
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int row = grid.length, col = grid[0].length;
int[][] dp = new int[row][col]; dp[0][0] = grid[0][0];
for (int i = 1; i < row; i++)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 1; j < col; j++)
dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < row; i++) {
for (int j = 1; j < col; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
Solution 2: DP in place
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int row = grid.length, col = grid[0].length;
for (int i = 1; i < row; i++)
grid[i][0] += grid[i - 1][0];
for (int j = 1; j < col; j++)
grid[0][j] += grid[0][j - 1];
for (int i = 1; i < row; i++) {
for (int j = 1; j < col; j++) {
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[row - 1][col - 1];
}