LeetCode Q 120 - Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solution : DP
We build the path from bottom to top.
State Transfer Function:dp[j] = Math.min(dp[j], dp[j + 1]) + list.get(j);
Code: Use Array
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null) return 0;
int[] dp = new int[triangle.size()];
for (int i = 0; i < dp.length; i++)
dp[i] = triangle.get(triangle.size() - 1).get(i);
for (int i = triangle.size() - 2; i >= 0; i--) {
List<Integer> list = triangle.get(i);
for (int j = 0; j < list.size(); j++)
dp[j] = Math.min(dp[j], dp[j + 1]) + list.get(j);
}
return dp[0];
}
Code: Use ArrayList
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
List<Integer> list = new ArrayList<>(triangle.get(n-1));
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
list.set(j, triangle.get(i).get(j) + Math.min(list.get(j), list.get(j + 1)));
}
}
return list.get(0);
}