LeetCode Q 329 - Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:Input: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
Solution :
DFS + Memorizationmemo[i][j]
: the maximum length of increasing numbers until point [i][j]
Code:
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return 0;
int m = matrix.length, n = matrix[0].length;
int[][] memo = new int[m][n];
booelan visited = new boolean[m][n];
int[] directions = {0, 1, 0, -1, 0};
int res = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
res = Math.max(res, dfs(matrix, i, j, memo, visited))
}
}
return res;
}
private int dfs(int[][] matrix, int row, int col, int[][] memo, boolean[][] visited, int[] dirictions) {
if (visited[row][col]) return memo[row][col];
int m = matrix.length, n = matrix[0].length;
int res = 1;
for (int i = 0; i < 4; i++) {
nx = row + directions[i];
ny = col + directions[i];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && matrix[nx][ny] > matrix[x][y])
res = Math.max(res, 1 + dfs(matrix, nx, ny, memo, visited, directions));
}
visited[x][y] = true;
memo[x][y] = res;
return res;
}