LeetCode Q 978 - Longest Turbulent Subarray
A subarray A[i], A[i+1], …, A[j] of A is said to be turbulent if and only if:
- For
i <= k < j, A[k] > A[k+1]
when k is odd, andA[k] < A[k+1]
when k is even; - OR, for
i <= k < j, A[k] > A[k+1]
when k is even, andA[k] < A[k+1]
when k is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:Input: [9,4,2,10,7,8,8,1,9] ; Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:Input: [4,8,12,16] ; Output: 2
Example 3:Input: [100] ; Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
Similar Question: Wiggle Subsequence
Solution :
Solution 1: DP
States
up[i]
: the maximum length until i if ith number is in peak.down[i]
: the maximum length until i if ith number is in valley.State Transfer Function:
if (A[i] > A[i - 1])
thenup[i] = down[i] + 1; down[i] = 1
if (A[i] < A[i - 1])
thendwon[i] = up[i] + 1; up[i] = 1
if (A[i] == A[i - 1])
thenup[i] = down[i] = 1
Optimization: Since the ith state only depends on the (i-1)th state, therefore we can just use two variables up and down.
Code:
public int maxTurbulenceSize(int[] A) {
if (A.length == 1) return 1;
int up = 1, down = 1;
int maxLen = 1;
for (int i = 1; i < A.length; i++) {
if (A[i] > A[i - 1]) {
up = down + 1;
down = 1;
maxLen = Math.max(maxLen, up);
} else if (A[i] < A[i - 1]){
down = up + 1;
up = 1;
maxLen = Math.max(maxLen, down);
} else {
up = down = 1;
}
}
return maxLen;
}